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General formulas are presented for the vertex numbers, v, of pentagon+ 
hexagon polyhedra of icosahedral, tetrahedral or dihedral symmetries. Criteria 
for uniqueness of representation, isomer counts and grouping of pentagons 
are established. All polyhedra with 256 vertices or less and belonging to T, 
Ds, 06 or their supergroups are listed. With the addition of C3~ to the dihedral 
and higher groups, at least one pentagon+ hexagon cluster is found for all 
even v-> 20 except for v = 22 which is unrealisable in any symmetry, and 
v = 46 (for which a C3 polyhedron exists). Carbon clusters with closed elec- 
tronic shells are shown to be generated by a geometrical leapfrog procedure: 
for all v = 6 0 + 6 k  (where k is zero or greater than one) at least one closed 
shell structure is predicted. In dihedral symmetry closed shells also exist for 
some other values of v. Separation of the 12 pentagonal faces is not sufficient 
to ensure a closed electronic shell but appears to be a necessary condition in 
dihedral or tetrahedral symmetry. 
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1. Introduction 

Carbon clusters are objects of intense theoretical activity at present, sparked off 
by the discovery in 1985 of a long-lived C6o fragment amongst the products of 
laser vaporisation of graphite [1]-[3]. A truncated icosahedral sixty-carbon 
cluster, until then simply a theoretical speculation, was proposed as the source 
of an intense peak at e/m ~720 in the mass spectrum of the fragmentation 
products [1]. Calculations at various degrees of sophistication [4]-[10] from 
simple Hficket to ab initio SCF have added plausibility to this proposal, indicating 
that t-icosahedral C6o would have a closed electronic shell with a high delocalisa- 
tion energy and would occupy a local minimum on the potential energy surface. 
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Peaks are observed for clusters with even numbers of carbon atoms ranging from 
a few to over two hundred atoms, and some, such as that at e /m  ~ 840 (C7o), 
are of an intensity comparable with the C6o peak [1]. This pattern has been 
interpreted as indicating that geometrically closed, pseudospherical clusters Cn 
may be stable for a range of n, rather than for n = 60 alone [3]. Again this 
suggestion is supported by systematic theoretical studies [11-13] which have 
found sequences of magic numbers for clusters of this type. 

Hiickel arguments predict closed electronic shells for an infinite series of icosahe- 
dral clusters with n = 60(a2 ..~ 3 ab + 3 b ~) (integral a, b >- 0), of which C6o is the 
prototype [12]. High symmetry is only one of several factors conducive to cluster 
stability [14] and the icosahedral clusters prove to be a subset of a series with 
n ~ 6 0 + 6 k  ( k = 0  or k->2) where each molecule has a closed shell and again 
C60 is the first member [13]. This latter series is generated by a geometrical 
"leapfrog" operation [12] to be discussed in detail below. 

In the present paper we develop criteria for the existence of clusters with the 
next highest accessible symmetry, the tetrahedral T, Ta and Th carbon frameworks, 
and relate their geometrical and electronic structures. In addition, our method 
of construction allows us to consider general rules for clusters belonging to some 
lower symmetry groups (D, ,  Dnd, Dnh with n = 2, 3, 5 or 6). 

2. Polyhedral carbon frameworks 

In looking for possible structures for unsaturated carbon clusters we can restrict 
attention to polyhedra satisfying certain constraints [3, 10, 12, 14]. They must be 
3-connected, to allow each carbon to form cr bonds to its neighbours, and should 
have a high proportion of hexagonal faces, to maximise the 7r delocalisation 
energy. They should also be roughly spherical in shape to minimise angle strain 
between bonds. These conditions are satisfied by polyhedra with all faces pen- 
tagonal or hexagonal; such a polyhedron must in fact have exactly 12 pentagonal 
faces. They form a subset of the "medial"  polyhedra of Goldberg [15, 16] but 
do not appear to have a specific mathematical name. Kroto [17] has proposed 
calling the corresponding carbon clusters Buckminsterfullerenes and distinguish- 
ing them by vertex number and point-group symmetry, so that for example 
truncated icosahedral C6o would be (Ih)C~o in his notation. 

Polyhedra of this type exist for all even numbers of vertices v >- 20 wi th the  sole 
exception [18] of v = 22: it is impossible to construct a 22-vertex cluster with 12 
pentagons and a single hexagon. An odd number 'of  vertices is precluded by the 
connectivity, since the polyhedron has e = 3v/2 edges. As v increases so does 
the number of combinatorially distinct v-vertex polyhedra, and for a given v 
clusters of several different point-group symmetries may be possible. 

Other things being equal, high symmetry is usually favourable to cluster stability. 
For the highest possible symmetries, the icosahedral groups I and Ih, the geometric 
and electronic structures have been systematically studied [11, 12]. The aim of 
the next section is to extend this work to tetrahedral (T, Td and Th) symmetry. 
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Geometrical  factors are considered first. We wish to know for what numbers v 
is a tetrahedral cluster possible, bow many distinct tetrahedral structures corre- 
spond to each allowed v, and how each polyhedron may be constructed. The 
electronic structures of  carbon clusters based on these polyhedra are treated later. 

3. Tetrahedral clusters 

Elementary symmetry arguments can be used to derive some limitations on v by 
considering the orbi ts  [19] of  the tetrahedral group. For any point group there 
is only a finite number  of  different orbits (types of  sets of  equivalent points); in 
the group Ta, for example, there is an orbit of  order 1 (an atom at the intersection 
of al l  symmetry elements), one of order 4 (generated by an atom on a C3 axis), 
one of order 6 (two atoms on each C2 axis), one of order 12 (two atoms in each 
mirror plane) and one of  order 24 (generated by an atom on no symmetry 
element). T, the rotational subgroup of Td, has orbits of  order 1, 4, 6 and 12; 
Th, the point group of  a centrosymmetric but tetrahedral molecule (e.g. the 
"octahedral"  complex M(H20)6 illustrated in Fig. 6.3 of  Griffith's book [20]) 
has orbits of  order 1, 6, 8, 12 and 24. 

The orbits can be visualised as vertices of  polyhedra. For example, the 4-orbit 
of  T and Ta is the set of  vertices (or  face centres) of  a regular tetrahedron, the 
6-orbit spans a regular octahedron and the 12-orbit a truncated tetrahedon (see 
Fig. 1). 

1 4 

6 12 

Fig. 1. Orbits of the T d point group. The 
five different types of set of equivalent 
points compatible with T d symmetry are 
illustrated 24 
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Now, a pseudospherical cluster has no atom at the centre, and a 3-connected 
cluster can have no atom on a Ca axis and therefore no set of 6 equivalent atoms. 
All the other orbits contain a multiple of 4 atoms and thus v must be a multiple 
of four for any tetrahedral pen tagon+ hexagon cluster. In addition, the number  
of  sets of  four equivalent atoms is limited to zero, one or two, since no more 
than two atoms are allowed on each (73 axis for a cluster consisting of a single 
spherical shell. Similarly, the number of sets of  6 equivalent points (not atoms) 
is limited to one. 

We can regard any pen tagon+hexagon  cluster as a pseudosphere on which 12 
pentagons lie, with the spaces in-between tiled with hexagons. In tetrahedral 
symmetry the centres of  the pentagons must form a single 12-orbit, i.e. they are 
all equivalent. (Combinations such as 12 = 4 + 4 + 4 and 12 = 6 + 6 are ruled out 
by the pseudospherical topology.) Incidentally, this shows why octahedral (O 
and Oh) Buckminsterfullerenes are not possible: the 12 equivalent sites would 
lie on (72 axes in these groups and this is incompatible with the symmetry of the 
pentagon. The groups T, Td and Th exhaust the allowed cubic groups for 
Buckminsterfullerenes. 

Possible clusters may also be subdivided according to whether the 12 equivalent 
pentagons are present as 4 fused triples, 6 fused pairs or 12 isolated singles, 
[14, 17] and further classified according to the orientation of the triples or pairs. 
Fig. 2 shows the 6 types of  cluster for Td symmetry. By filling in the spaces 

triples 

pairs 

isolated 

Fig. 2. Disposition of pentagons on the surface of a 
pseudospherieal  Td polyhedron. Six distinct 
distributions are possible in T d symmetry,  two each 
involving triples, pairs and isolated pentagons. The 
spaces between the pentagons are to be filled by 
hexagons 
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between pentagons it is possible to build up series of clusters and to derive by 
induction formulas for their vertex numbers. 

4. Systematic construction: icosahedral clusters 

However, a much more powerful approach is possible, one that gives a unified 
derivation for all allowed v from which the subtypes emerge as special cases. 
This is an extension of the method described by Coxeter for icosahedral clusters 
[21]. To set our results for tetrahedral structures in context, we must first give a 
summary of the approach as it applies to icosahedral symmetry. 

Coxeter's method is best explained by considering not the spherical pentagon + 
hexagon cluster but its face dual (often simply called the dual). The dual of a 
polyhedron ~ is found by replacing each face-centre of N by a vertex, and each 
vertex of ~ by a face-centre. The dual of any 3-connected polyhedron with 12 
pentagonal and f6 hexagonal faces is a deltahedron N (= a polyhedron having 
only triangular faces) with 12 five-coordinate and f6 six-coordinate vertices. A 
polyhedron and its dual have the same point-group symmetry. 

For icosahedral symmetry the Coxeter construction runs as follows. The twelve 
5-coordinate vertices of @ are all equivalent in icosahedral symmetry and they 
can be connected together to form a master icosahedron whose surface can then 
be subdivided into small triangles--the faces of 9. Take a planar lattice of 
equilateral triangles of unit side and draw the net of the master icosahedron onto 
this plane in the following way. From one vertex (A) move along b edges, then 
turn through 60 ~ and move along c edges (Fig. 3). b and c are integers satisfying 
b --- c -> 0. This defines the second vertex (B). Repeat the sequence to reach vertex 
C and then return to A. This gives one large triangle ABC.  Twenty such triangles 
make up the net of a spherical icosahedron, and the small triangles contained 
within it are the faces of  the deltahedron of icosahedral symmetry. The area of 
A B C  is ~/3/4(b2+ be+ c 2) and each small triangle has an area ~/3/4. Therefore 
the total number of faces in the deltahedron ~ is 20(b2+bc+c2);  the number 
of  vertices in the pentagon + hexagon cluster ~ is also 20(b 2 + bc + c2). The vertices 
A, B, C , . . .  of  the master icosahedron correspond to centres of pentagonal faces 
in the final 3-connected cluster. 

The multiples of 20 which are represented by 20(b 2 + be + c2), and which therefore 
occur as the vertex number of an icosahedral cluster, are those of  the form 

Fig. 3. The Coxeter construction for an icosahedral 
polyhedron. The equilateral triangle ABC has side 
(b2+ bc+ c2) 1/2 and is one of 20 making up the net of 
the master icosahedron 
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Fig. 4. Net of the twisted truncated 
tetrahedron, the general polyhedron of 
tetrahedral symmetry 

v = 2 0 M 2 N  where none of  the prime factors of N are of the form 3k+2:  just 
40% of the multiples of 20 under 1000 occur. 

5. Systematic construction: tetrahedral clusters 

The previous section constitutes a general derivation of the vertex-number of an 
icosahedral (1 or Ih) of the Buckminsterfullerene type. Symmetry aspects of this 
formula and its relation to bonding are discussed in [ 12]. To extend it to tetrahedral 
clusters we must generalise the net. The net of the dual deltahedron ~ of any 
3-connected pentagon+hexagon polyhedron ~ can be superimposed on the 
triangulated lattice. The most general tetrahedral polyhedron with 12 vertices 
A B C . . .  JKL is a twisted truncated tetrahedron and its net consists of 4 large 
equilateral triangles, 4 small equilateral and 12 scalene triangles as shown in Fig. 
4. Each vertex A . . .  L corresponds to a pentagonal face in the final dual polyhe- 
dron. To determine the area covered by the net it is sufficient to consider a scalene 
triangle A B C  superimposed on the triangulated plane as in Fig. 5. Taking A as 
the origin, the vertex B is specified by a pair of integers (i , j) ,  and the vertex C 
by the pair (k, 1). Thus B is reached by taking i steps along the direction el 
followed by j steps along e2. Given these vertices, equilateral triangles A C D  and 
ABE (Fig. 4) are erected on the sides of ABC, the parallelogram is completed 
by a similar scalene triangle BCF, and so on until the whole net is drawn. The 
area of A B C  is V'3 /4( i l - j k ) ,  A C D  covers ~/3/4(k2+kl+l  z) and A B E  has an 
area 4-3/4(i2-1 -/j +j2). The total area of the net is thus equivalent to 4[ iz+ ij +j2+ 
k 2 + kl + l 2 + 3(il - j k ) ]  small triangles. The general pentagon + hexagon cluster of 
tetrahedral symmetry has therefore 

v = 4[i2+/j  +j2 + k2+ kl+ 12+3(i l - jk)]  (1) 

vertices. By construction the quantities i,j, k and I are integers such that il - j k  > 0 
and i > 0 ,  j>-0.  

This equation for v can be used to give a complete description of all tetrahedral 
clusters if several important points are noted. If  the formula is to count each 
distinct cluster once and only once, further restrictions must be imposed on i, j, 
k and I. Detailed consideration of the transformation of these integers under 
rotations in the plane yields the following additional conditions for uniqueness 
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Fig. 5. The Coxeter construction for a general polyhedron 
of  tetrahedral symmetry. ABC is a scalene triangle from 
the net in Fig. 4 
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(see Appendix for detail): 

i 2 + / j  +j2 > k 2 + kl + 12 (2a) 

x >_ y>_O, (2b) 

where 

x = l(i - j )  - k ( i  + 2j) + 3(k 2 + kl + 12) 

and 

y = l ( i + 2 j ) -  k ( 2 i + j ) .  

Also, 

I f  y = j = 0  then 2 k + / - 0 .  (2c) 

I f  the two sides in (2a) are equal then ( k + l , - l ,  i + j , - j )  represents the same 
cluster as (i, j, k, l). 

A more compact  representation of the formula (1) can be obtained in terms of 
two complex parameters,  instead of four integers, as follows. Let ~o be the complex 
number  exp (21ri/6) = �89 1 + ~---3); then the point with triangular coordinates (b, c) 
on the net can be described by the single complex number  a = b + c~o in the 
Argand diagram. Note that J a r =  ~6 = b 2 + b c + c  2 is the square of  the distance 
of this point f rom the origin. The vertex number  v of  an icosahedral cluster with 
Coxeter parameters b, c can now be expressed as v = 20a6 where a = b + cto; in 
the tetrahedral case setting a = i +jw, ~ = k + lto gives 

v = v(~, /3)  = 4 [ ~  + /3d  + 4-z53(~/3 - / 3~ ) ] .  (3) 

The condition il - j k  > 0 becomes Im ( /3 /a)  > 0. The restrictions (2) can be recast 
in terms of  the magnitudes and directions of  the vectors a , /3  in the complex 
plane. Algebraic properties of  the set of  allowed v are most easily proved using 
this complex representation. 

6. Assignment to point groups 

Tetrahedral clusters must belong to one of  three point groups T, Ta and Th or, 
if additional elements of  symmetry are present, to the higher group I or Ih. A 
particular cluster can be assigned to one of the five groups from the orientation 
and shape of its net, A B C . . .  JKL,  or equivalently by inspection of  (a,/3).  
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6.1. Case ( a ) Centrosymmetric icosahedral ( Ih ) 

The triangle ABC is equilateral and AB is either horizontal  (parallel to el) or  at 
30 ~ to the horizontal.  The first condit ion implies /3 = ato and the orientation 
condi t ion is ~ = i or ~ = i ( l + t o ) .  In  this case v(a , /3)  reduces to 

v = 20( i2+ i j+j 2) (4) 

with j = 0 or  i = j .  

6.2. Case ( b ) Handed icosahedral ( I) 

The triangle ABC is equilateral but  AB lies at a general angle to the horizontal.  
Then = 1/31 and /3  = o~to but oz is unrestricted; v(a,/3) reduces to (4) without  
the condi t ion on i and j. 

6.3. Case ( c ) Centrosymmetric tetrahedral ( Th ) 

ABC is isosceles so that  the net consists o f  8 equilateral triangles of  side I~1 and 
12 isosceles triangles. The condi t ion that  the po lyhedron  must  be centrosymmetr ic  
implies tha t /3  = ~to" where n is an integer ( 0 -  n <- 5). 

6.4. Case (d) Tetrahedral (Td) 

This separates into two subcases. In  case (d ' )  ABC is a right-angled triangle 
(/_BAC = 90 ~ with AB lying at 0 ~ or 30 ~ to the horizontal.  Then Re (o~/fl)= 0 
and ~ = i, fl = k ( 1 - 2 t o )  or t~ = i(1 + to),/3 = k(1 - t o ) .  So either j = 0 and l =  - 2 k ,  
giving v=4( iE-6 ik  + 3k2); or j = i  and l = - k ,  giving v=4(3iE-6ik  + k2). The 
master  po lyhedron  degenerates to a rectangular  cuboctahedron.  In  case (d") ABC 
is a scalene triangle with / A B C - - 1 2 0  ~ and AB horizontal  or at 30 ~ to the 
horizontal.  Either a = i, /3 = i+lto, so j = 0  and k =  i, giving v=4(2i2+4i1+12); 
or a=i ( l+ to ) ,  /3=k+(3i -2k) to ,  so j = i  and l = 3 i - 2 k ,  giving v =  
12(7i2-6ik+k2). For  case (d") clusters the master  po lyhedron  is a t runcated 
tetrahedron.  

6.5. Case (e) Handed tetrahedral ( T) 

All other combinat ions  give the lower T symmetry:  when ABC is a general 
scalene triangle, or when  it is one of  the special triangles but  the net lies in a 
general orientat ion on the tr iangular grid. In  the latter circumstances the master  
po lyhedron  is not  itself twisted, but  the disposit ion o f  pentagons at the vertices 

is chiral. 

Reasoning of  this kind has been incorpora ted  into a computer  p rogram for 
generating all distinct tetrahedral  clusters and classifying them by  point  group 

(see Appendix  and Table 1). 
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Table 1. A list of all possible tetrahedral pentagon+hexagon polyhedra, complete to v = 256 and 
including the icosahedral supergroups, i, j, k, l are the parameters in Eq. (1). v is the number of 
vertices and m is the multiplicity--the number of distinct clusters of given v. For I and T symmetries 
one enantiomer of each pair is given. The column labelled "Pentagons" describes the grouping of 
the pentagons on the surface of the polyhedron and n4 is the number of sets of 4 equivalent vertices 

v m i j k l Group Pentagons n 4 

100 

104 

112 
116 

120 
124 

132 
136 

140 

148 

152 

156 
160 
164 

168 

20 1 
28 1 
40 1 
44 1 
52 1 
56 1 
60 1 
68 2 

76 2 

80 1 
84 1 
88 1 
92 3 

1 0 0 1 I h one patch 0 
1 1 0 1 T a one patch 1 
1 1 - 1 1 T a triples 1 
2 0 0 1 T triples 2 
2 0 1 1 T pairs 1 
2 1 0 1 T d triples 2 
1 1 - 1  2 I h isolated 0 
1 2 - 1 1 T triples 2 
1 2 0 2 Td pairs 2 
2 0 - 1  2 T a isolated 1 
3 0 0 1 T triples 1 
2 0 0 2 1 h isolated 0 
3 0 1 1 Te isolated 0 
1 2 -1  2 T isolated 1 
2 1 0 2 T isolated 2 
2 1 1 2 T h pairs 2 
3 1 0 1 T d triples 2 
2 1 -1  2 T isolated 1 
2 2 - 1  1 T a triples 1 
3 0 2 1 T pairs l 
1 3 - 1 1 T triples 2 
2 2 0 2 T a isolated 1 
1 2 - 2  2 T isolated 2 
1 2 - 1  3 T h isolated 2 
4 0 0 1 T triples 2 
3 0 - 1 2 Ta isolated 0 
1 3 - 1 2 T isolated 1 
1 3 0 3 T d pairs 1 
3 0 0 2 T isolated 1 
2 2 -1 2 T isolated 0 
3 0 1 2 T isolated 1 

4 1 0 1 Ta triPles 1 
1 2 - 2  3 I isolated 0 
2 3 - 1 1 T triples 2 
3 l 9 2 T isolated 2 
3 1 1 2 T isolated 2 
l 4 - 1 1 T triples 1 
3 1 - 1 2 T isolated 1 
3 1 2 2 T pairs 1 
1 3 - 1 3 T isolated 2 
2 1 - 2  3 Th isolated 2 
2 2 0 3 T isolated 0 
2 2 - 2  2 Ta isolated 1 
i 3 - 2  2 T isolated 2 
3 2 0 2 Ta isolated 2 
4 0 3 1 T pairs 2 
5 0 0 1 T triples 2 
1 4 - 1  2 T d isolated 0 
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Table 1 (continued) 
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2 
2 
3 
4 
4 

3 
2 
3 
3 
1 
1 

2 
4 
5 
1 
1 
2 
3 
4 
4 
1 
3 
3 
4 
4 
4 
2 
2 
3 
3 
3 
1 
1 
2 
3 
4 
6 
4 
2 
3 
1 
1 
5 
2 
3 
3 
4 
5 
2 
1 
2 
4 

-1  
-1  
-1  
-1  

0 
0 
0 

-1  
-1  
- 2  
-1  
-1  

1 

0 
-1  

0 
- 2  

0 
0 
1 

-1  
-1  

1 

-1  
2 
2 

- 2  
-1  
- 2  

1 

2 
- 2  
- 2  
-1  

0 
3 
0 
0 

-3  
-1  
- 3  
-1  
-1  

0 
-1  
-1  
-1  

0 
- 2  
- 2  
-1  

0 

T 
T 
T 
r~ 
T 
Ia 
Ta 
T 

Ta 
T 
rh 
T 

T 

T~ 
T 

r~ 
T 

T 

T 

T 

T 

T 

Wh 
T 

r~ 
T 

T 

T 

T 
T 

rh 
T 

T 
T 

T 

T 
T 

T~ 
r~ 
T 

T 
T 
Td 
T 
T 

T 

T 

T 

In 
T 
T 
T 

v rn i j k 1 Group Pentagons n 4 

172 4 isolated 
isolated 
isolated 
isolated 

176 1 isolated 
180 1 isolated 
184 3 isolated 

isolated 
triples 

188 5 isolated 
isolated 
triples 
isolated 
triples 

196 6 isolated 
pairs 
isolated 
isolated 
isolated 
isolated 

200 3 triples 
isolated 
isolated 

20a 2 isolated 
isolated 

208 1 isolated 
212 5 isolated 

isolated 
isolated 
isolated 
pairs 

220 6 isolated 
isolated 
isolated 
isolated 
pairs 
triples 

224 1 isolated 
228 2 isolated 

isolated 
232 3 isolated 

isolated 
isolated 

236 5 isolated 
isolated 
triples 
isolated 
isolated 

240 1 isolated 
244 5 isolated 

triples 
isolated 

1 

1 

1 

1 

2 
0 
1 

1 

1 

2 
2 
2 
2 
2 
1 
1 

1 

1 
1 

1 

2 
2 
2 
0 
0 
1 
2 
2 
2 
2 
2 
1 

1 
1 

1 

1 

1 
2 
0 
0 
1 
1 
1 
2 
2 
2 
2 
2 
0 
1 
1 
1 
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Table 1 (continued) 
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v m i j k 1 Group Pentagons n 4 

248 3 

252 1 

4 2 - 1 2 T isolated 1 
5 0 4 1 T pairs 1 
2 3 - 2 3 T isolated 2 
5 0 1 2 T isolated 2 
6 1 0 1 T a triples 2 
3 3 0 3 T a isolated 0 

7. Isomeric tetrahedral clusters 

Within the restrictions (2) it is still possible for a given v to be generated by two 
or more  different sets ( i , j ,  k~ l) but only if the clusters are distinct isomers. Thus 
for v = 68 there are two tetrahedral  clusters: one with i = 1, j = 2, k = 0, l = 2 and 
a second with i = 1, j = 2 ,  k = - 1 ,  l =  1; the first has pentagons in pairs and has 
T symmetry,  the second has pentagons in triples and belongs to Ta. For  v = 92 
there are 3 distinct clusters: one example each of  Th and Ta and a mirror- image 
pair  o f  T symmetry.  

The pen tagon  groupings within the cluster are easily identified f rom the net or 
f rom (~,/3). Vertices jo ined in the net by lines o f  unit length represent pentagons 
in contact  in the final polyhedron.  When [a I = 1 or 1/31 = 1 their respective equi- 
lateral triangles correspond to 3-pentagon patches;  when ]a -/31 = 1 the line B C  
represents a pair  o f  abutt ing pentagons.  C2o is the degenerate case lal = I/3[ = 
] a - / 3 1 =  1 when every pentagon is in contact  with five others; C28 has 1/31 = 
I a -/31 = 1 and every pentagon touches 3 others. In  all larger tetrahedral  clusters 
a pentagon touches at most  2 others and the largest "pa tches"  are groups o f  at 
most  three pentagons  in contact.  

Impos ing  the appropria te  restrictions on the general formula  for v ( a , / 3 ) ,  it turns 
out  that  all tetrahedral  clusters with pentagon triples obey 

v(triple) = 4 (a2+  ab + b 2 - 2 )  (5) 

with a > - -b -  0, and all clusters with pentagon pairs obey 

v (pair) = 8(a 2 + 3 ab +-3  b 2) - 4 (6) 

with a, b > 0. It is s traightforward to derive these formulas independent ly  by 
using Goldberg ' s  result [15] for the number  o f  faces o f  a medial  tetrahedral 
polyhedron.  Tables 2 and 3 list the triple and pair  clusters for  v < 256. Note  that 
v = 20 and v = 28 are degenerate cases and appear  in both lists. Multiple occurren- 
ces in a given Table (e.g. v = 188) indicate distinct isomers with the same type 
o f  pentagon patch. Note  also that no entry in these tables is a multiple o f  3; the 
significance o f  this fact will emerge later. 

A complete  list o f  the al lowed vertex numbers  v < 256 is given in Table 1, together 
with a list o f  the isomer counts,  point -group symmetries, and classification by 
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Table 2. Vertex numbers of clusters with 3-pentagon patches, a and b are the parameters in Eq. (5) 

0 
1 
2 
3 
4 

2 3 4 5 6 7 8 

28 56 92 136 188 
20 44 76 116 164 220 
40 68 104 148 200 

100 140 188 244 
184 236 

248 

Table 3. Vertex numbers of clusters with 2-pentagon patches, a and b are the parameters in Eq. (6) 

b• 0 1 2 3 4 

0 28 68 124 
1 20 52 100 164 244 
2 92 148 220 
3 212 

5 

196 

p e n t a g o n  grouping .  Each  entry  for  a T (or  I )  c luster  in the  Table  represents  a 

pa i r  o f  enan t iomers .  

Some interes t ing genera l  po in ts  emerge f rom a cons ide ra t ion  o f  the  Tables .  First ,  
the  t e t r ahedra l  clusters are in fact  very common.  Of  the mul t ip les  of  4, a lmost  
all  numbers  above  20 admi t  a t e t r ahedra l  cluster.  The except ions  are con jec tured  
to be numbers  of  the fo rm v = 4 x 2 N x  3 M where  N and  M are non-nega t ive  
integers.  This  conjec ture  has  yet  to be p roved  bu t  direct  enumera t ion  shows it 
to be  t rue for  all v be low 10 000. Thus the  d i sa l lowed  v are 24, 32, 36, 48, 64, 
72, 96, 108, 128, 144, 192, 216, 2 5 6 , . . .  and  in the  range 2 0 - - - v -  < 10 000 some 

98% of  the  mul t ip les  o f  4 are a l lowed.  

The mul t ip l ic i ty ,  i.e. the n u m b e r  of  poss ib le  i somers  at a given v, increases  with 
cluster  size bu t  ra ther  s lowly and  errat ical ly.  Examples  o f  T and  Td clusters wi th  
the  same v are common ,  e.g. 68, 92, 1 0 0 . . .  and  the first example  wi th  bo th  
i eosahed ra l  and  t e t r ahedra l  i somers  is v = 140. 

8. Multiplication of clusters 

A second  po in t  i l lus t ra ted  by  the Table  is that ,  i f  v is an a l lowed  t e t r ahedra l  
number ,  mul t ip les  of  v such as 2v, 3v, 4 v . . .  also occur.  In  genera l  all  mul t ip les  
o f  the forms ( p 2 +  q2)v and  (p2+ pq + q2)v occur;  the  first miss ing integer  mul t ip le  
is thus 11 v. M a n y  o f  these  mul t ip l ica t ions  can be  given s imple  geometr ica l  

in te rpre ta t ions .  
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Fig. 6. Effect of the leapfrog operation on the~ I 
faces, vertices and edges of a ] 
3-connected polyhedron 

For example, the transformation v ~ 3v can be achieved by scaling all lengths in 
the net by ~ and rotating all position vectors through 90 ~ (a ~ 4-L-3a, fi ~ ~--3fl). 
In geometrical terms the transformation v-~ 3v is the leapfrog operation [12, 13] 
and applies to any 3-connected pentagon+hexagon polyhedron ~ (not 
necessarily tetrahedral or icosahedral). The leapfrog ~ is constructed from ~ in 
two stages. First, the pentagonal and hexagonal faces are capped to produce a 
deltahedron N. Then the face dual of @ is taken. A simple application of Euler's 
rule shows that the final polyhedron has three times as many vertices as the 
original, is still a pentagon+hexagon polyhedron, and retains the symmetry of  
the original. Fig. 6 shows how the faces and other components of ~ change 
under the leapfrog operation. 

Leapfrogging may be repeated and so the numbers v, 3v, 9v, 27v, . . .  all appear 
in the list of allowed vertex numbers for a given symmetry. For the particular 
case of the tetrahedral and icosahedral clusters with vertex numbers v(a,/3) given 
by (3) it is possible to show that the cluster is a leapfrog if and only if v is a 
multiple of  3, so that v/3 occurs whenever v is a multiple of 3, and all tetrahedral 
clusters with 3n atoms are leapfrogs of smaller clusters. This is not true in all 
symmetry groups but it explains the observation made earlier that no cluster with 
3 n atoms has pentagons in contact---on leapfrogging every pentagon is surrounded 
by hexagons. The leapfrog operation is particularly important because, as shown 
in [13], it is directly connected to the electronic structure of the polyhedral carbon 
cluster: all leapfrogs have closed electronic shells. The point is taken up in a 
later section of  this paper. 

The quadrupling transformation v ~ 4v, though less important from a bonding 
standpoint, also has a simple geometrical interpretation and applies to the whole 
class of 3-connected pentagon + hexagon polyhedra. In terms of the tetrahedral 
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Fig. 7. Effect of the quadrupling operation 
on the faces, vertices and edges of a 
3-connected polyhedron 

net it is achieved by the changes c~ --> 2c~,/3 --> 2/3, equivalent to doubling all lengths 
in the net but preserving the orientation. For the more general pentagon + hexagon 
polyhedron ~, the quadruple ~ is found as follows. Form the edge dual ~ (a 
polyhedron with edge centres at the vertices of ~ and vertices at the centres of 
the edges of ~) .  Because ~ is 3-connected each of its edges meets 4 others and 
therefore ~ is 4-connected with the same number  of pentagons and hexagons as 

but with v additional triangular faces. Capping all the pentagonal and 
hexagonal faces of ~ gives a deltahedron @' whose face dual is the final, quadruple 
polyhedron ~. R is a pentagon + hexagon cluster with the same symmetry ~ but 
with four times as many vertices. Figure 7 shows the effect of the quadrupling 
operation on components of ~ and Fig. 8 illustrates the leapfrog and quadrupling 
operations for the simplest cluster C2o, the regular dodecahedron. Again for the 
series v(c~,/3) it turns out that whenever v is divisible by 16 then v/4 is present 
so that all tetrahedral and icosahedral clusters with 16n vertices are quadruples 
of  smaller clusters. 

The doubling transformation v--> 2v is less general than either of these. It does 
not preserve symmetry for the tetrahedral clusters. It can be shown that transfor- 
mations v ~ (p2+pq + q2)v preserve the T subgroup symmetry but only preserve 
Ta or Th symmetry i fp  = q or q = 0; thus for full symmetry conservation essentially 
the only allowed multiplications are v ~ 3 v  and v~p2v. Each of these has a 
simple geometrical interpretation (respectively, leapfrog and p-division of faces 
of the master deltahedron). 

9. Electronic structure of tetrahedral clusters 

For every v obeying Eq. (1) there is at least one geometrically closed tetrahedral 
polyhedron. However, its viability as a stable carbon cluster depends on electronic 
as well as geometric factors. In the absence of accurate all-electron treatments 
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P 

Fig. 8. Effect of the leapfrog (above) and quadrupling (below) operations on the regular dodecahedron 

of large clusters, it is possible to deduce some qualitative features of  the electronic 
structure using simple Hfickel theory, assuming well-separated o- and ~r systems 
and a single bond integral parameter  [4, 5, 9]. Such relatively crude treatments 
are usually sufficient to predict the number, symmetry and energy-order of  
bonding MOs (at least near the H O M O - L U M O  gap) and to indicate special 
"aromat ic"  stability. 

In the simplest picture of  a 3-connected carbon cluster each atom is supposed 
to contribute 3 sp 2 hybrids and 3 valence electrons to the electron-precise o- edge 
bonding, and one radial p orbital with the remaining valence electron to the "~-" 
system. The spherical harmonics and their derivatives may be used to classify 
the resulting MOs and to estimate their bonding/ant ibonding characteristics [9]. 

I f  fewer than N / 2  of the ~- orbitals of an N-a tomic  cluster are bonding the 
cluster is unlikely to exist as a neutral species. However, if at least N / 2  ~r MOs 
are bonding we can distinguish three cases of  interest. The cluster may have 
exactly N / 2  bonding orbitals and thus a closed electronic shell. Or, the cluster 
may have more than N / 2  bonding MOs but with a part-filled degenerate HOMO 
and thus an open shell; it is then susceptible to Jahn-Teller  distortion to a lower 
symmetry. Finally, the cluster may have more than N / 2  bonding MOs of which 
the lowest N / 2  are doubly occupied: a closed shell with low-lying empty bonding 
orbitals (a pseudo-closed shell). The predictions of  simple Hfickel theory are less 
clearcut in this case but structures with such small H O M O - L U M O  gaps are 
unlikely to be equilibrium geometr ies-- they may rearrange to reduce the number 
of bonding orbitals to N / 2  and thereby gain stabilisation energy. 

All tetrahedral clusters with v -  < 100 are classified in Table 4 according to the 
results of  simple Hiickel calculations. In the Table every example of  a cluster 
with 3-pentagon patches or with pentagon pairs has either an open or a pseudo- 
closed shell. Of the clusters with isolated pentagons only for v = 60 and v = 84 
are true closed shells found. 
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Table 4. Electronic structure of tetrahedral carbon clusters with 
up to 100 atoms. O stands for an open shell, PC for a closed 
shell with low-lying empty bonding orbitals and C for a true 
closed shell. These are results of Hfickel calculations with a 

single/3 parameter 

Electronic 
Pentagons v Group structure 

Triples 20 I h 0 

28 T a O 

40 T d 0 

44 T PC 

56 T d PC 
68 T PC 

76 T O 

92 T a PC 

100 T d 0 

Pairs 52 T O 

68 T d O 

92 Th 0 

100 T O 

Isolated 60 I h C 

76 T a O 
84 T a C 

88 T O 

92 T PC 
100 T O 

The tetrahedral open-shell configurations all have a triply-degenerate HOMO 
containing two electrons (t2); in the pseudo-closed shells the bonding LUMO is 
a triply degenerate set (t~ For icosahedral open shells the configuration is g2 [9]. 

C84 and C6o, in addition to having the only true closed shells in the list, are the 
only leapfrog clusters. Explicit calculation shows that leapfrogging any cluster 
in the list whether closed or open-shell also produces a closed-shell cluster. In 
fact, the leapfrog of a pentagon+ hexagon cluster of any symmetry can be shown 
to have a closed shell [13]. 

The argument runs as follows [13]. When a polyhedron ~ is converted to its 
leapfrog ~ ,  each edge of ~ produces one rotated through 90 ~ in 5r Every vertex 
of Lf is contained in just one such derived edge, and remembering that each 
vertex carries a radial p orbital we can assign one local r bond and one ~r 
antibond to each of the 3 N/2 derived edges. Interaction between the local orbitals 
will produce delocalised MOs and alter their energies but is not expected to 
change the total numbers of bonding and antibonding combinations. The o, 
framework is electron-precise simply from the connectivity, so the consequence 
is that the leapfrog of any pentagon + hexagon cluster has a closed shell. 

The derivation is not restrictive: all leapfrogs are closed, but non-leapfrogs may 
or may not have closed shells. This leads to the rule quoted in [13] that for 
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v = 6 0 + 6 k  ( k = 0  or k->2) there is at least one closed-shell structure. In the 
context of  the tetrahedral series this implies that whenever v is divisible by 12 
the cluster has a closed shell, since all such clusters are leapfrogs. Thus for 

v(leapfrog) = 12[ a2 + 3ab + 3 b 2 +  c2+3cd + 3 d 2 +  ad + be + 3bd] (7) 

(where a, b, c, d are positive integers) a closed-shell molecule of  tetrahedral 
symmetry exists. By the conjecture stated earlier this should include every multiple 
of  12 except those of  the form v =  12x2  u x3  M. 

A geometrical corollary of  this statement is that tetrahedral clusters with no set 
of  4 equivalent atoms have closed shells. The number  of  4-orbits for a cluster 
v(i,j, k, l) is easily shown to be 2 - x  where x is the number  of  multiples of  3 in 
the pair (i - j ,  k - l). Incidentally, x itself is the number  of  4-orbits in the vertex-set 
of  the corresponding dual deltahedron. The role of  the 4-orbit is similar to that 
of  the 20-orbit for icosahedral clusters: a cluster with no 20-orbit is closed-shell 
and has a vertex number  given by 

v(icos) = 60 [a2+  3ab + 3b 2] (8) 

(where a, b are integers), a special case of  both (4) and (7). 

Although we have not proved the converse of  the leapfrog principle, that no 
non-leapfrogs have closed shells, it seems a reasonable conjecture that this is so 
for tetrahedral clusters and that (7) generates a complete list of tetrahedral closed 
shells. It would seem therefore that isolated pentagons are necessary for a closed 
shell in tetrahedral symmetry but not sufficient. 

Group  theoretical aspects of  the leapfrog principle are covered in [13]. It is 
shown there that the reducible representation spanned by the bonding 7r MOs 
of  ~ coincides with the representation spanned by the edges of  ~. Thus both 
the number  and the symmetry of the bonding MOs of leapfrog clusters are 
available without explicit calculation of the Hiickel eigenvalues. 

10. Systematic construction: dihedral clusters 

Clusters with low symmetries are intrinsically less interesting than their cubic 
and icosahedral counterparts: more parameters enter the simple models of  their 
geometrical and electronic structures and the number  of  isomers increases rapidly. 
However some dihedral structures have been proposed for carbon clusters (a/~6h 
structure for C72 [3], a Dsh structure for C70 [2]) and the extended Coxeter 
construction can give a general formula for their vertex numbers with very little 
effort. Accordingly we here derive the formulas for Dn, Dnh and Dnd clusters 
with n = 6, 5, 3, or 2. 

For a pen tagon+hexagon  cluster of  Ds or D 6 symmetry the centres of  the 12 
pentagons are the vertices of  a bicapped twisted prism, either capped by a 
pentagonal pyramid and having 5-fold rotational symmetry or having a 6-fold 
axis and a flat hexagonal cap (Fig. 9). In both cases the net of  the polyhedron 
can be constructed from 10 (Ds) or 12 (D6) identical fragments, each consisting 



18 P. W. Fowler et al. 

Fig. 9. The general twisted bicapped prisms of D 5 and D 6 

symmetry. Each vertex of these polyhedra represents one of the 
12 pentagons in a pentagon+ hexagon carbon cluster 

of  an equilateral triangle joined to a scalene triangle. Working through the Coxeter 
construction for the net superimposed on a triangulated lattice we find, therefore, 
that clusters belonging to D5 or one of its supergroups have 

v(D,) = 10[k2+ kl+ IZ + (il-jk)] (9) 

vertices and for D6 and its supergroups the formula is the same but with 10 
replaced by 12: 

v(D6) = 12[k2+ kl+ 12+ (it-jk)]. (10) 

As usual (il - jk)  > 0. Now (9) represents v = 10n for every n > 1, so every multiple 
of  10 except 10 itself gives a D5 duster.  Similarly every multiple of  12 except 12 
itself can be represented by (10) and so gives a D 6 cluster. The special limitations 
for Dnh and Dnd symmetry are described in the Appendix. 

Table 5 lists all dihedral pen tagon+hexagon  polyhedra up to a limit of 256 or 
300 vertices for five- and six-fold symmetries, respectively. Schmalz el al. [14] 
generate clusters with v-< 84 by a somewhat different procedure and Table 5 
agrees with their list for dihedral clusters in this range. Several of our tetrahedral 
clusters also appear  in [14]. Simple Hiickel calculations on dihedral carbon 
clusters (v-< 100) are summarised in Table 6. As with tetrahedral clusters, the 
only dusters with true closed shells have isolated pentagons. The closed-shell 
C9o and C72 clusters are leapfrogs, as is of  course icosahedral C6o: closed shells 
also occur for C7o, C84 and C~oo. In all three of  the latter cases the cluster has 
one or more empty nonbonding orbitals whereas the leapfrog clusters have no 
nonbonding orbital. As noted in [13] the Dsa 120-vertex clusters (5, - 4 ,  1, 1) and 
(3, - 4 ,  2, 0) are leapfrogs of  the Dsd C4o clusters and have closed shells; the Dsh 
and other five-fold C12o clusters have open shells. The dihedral leapfrog clusters 
C6o, C72, C9o, C~08, C~2o... are accommodated by the 6 0 + 6 k  rule and it is 
tempting to speculate that the numbers 70, 100, . . .  and 84, 120, . . .  belong to two 
further infinite series of closed shells with v ~ 10(7+ rim) or 12(7+ nm) for some 
m. We note that all clusters with sixfold dihedral symmetry and v - 48 have the 
same number  of vertices as leapfrog clusters but not all are leapfrogs and not all 
have dosed  shells. 

For D 3 symmetry the net consists of  four kinds of  triangles (see Appendix),  and 
we obtain the following expression for the vertex number: 

v(D3) = 2A1 + 6(A2 + A3 + A4), (11) 
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Table 5. A list of all possible pentagon+hexagon polyhedra with five or six-fold principal axes, 
complete to v = 256 for fivefold and v = 300 for six-fold symmetry. The icosahedral super-groups of 
D 5 are included, v 5 and v 6 are the numbers of vertices of the five-fold and six-fold polyhedra, m is 
the multiplicity and i, j, k, l are the parameters of Eqs. (9) and (10). The types of pentagon patch in 
the polyhedron are: two caps (either one pentagon surrounded by five others or a hexagon surrounded 
by six pentagons); one ring (10 or 12 pentagons encircling the equator); five or six pairs; 12 isolated 
pentagons 

Vertices Group 
Pentagon 

v5 v6 m i j k l D s D 6 patches 

20 24 1 1 -1  1 0 I h D6d one ring 
30 36 1 1 - 2  l 0 Dsh D6h tWO caps 
40 48 2 2 --3 1 0 Dsd D6d two caps 

1 0 1 1 DSd D6a one ring 
50 60 2 2 - 4  1 0 Dsh D6h two caps 

1 -1  1 1 Dsh O6h pairs 
60 72 3 3 -5  1 0 D5d D6d two caps 

2 -1  1 1 l h D6d isolated 
1 - 1 2 0 D 5 D 6 pairs 

70 84 2 3 - 6  1 0 D5h D6h two caps 
2 - 2  1 1 Dsh D6h isolated 

80 96 5 4 -7  1 0 Dsd D6d two caps 
3 - 2  1 1 Osd O6d isolated 
2 - 2  2 0 Ih D6d isolated 
1 - 2  2 0 O5h O6h isolated 
1 0 2 1 Dsh D6h pairs 

90 108 3 4 --8 1 0 Dsh D6h tWO caps 

3 - 3  1 1 Dsh V6h isolated 
1 0 1 2 D 5 D 6 pairs 

100 120 4 5 - 9  1 0 Dsd D6d two caps 
4 --3 1 1 Dsd D6d isolated 
2 -3  2 0 D 5 /96 isolated 
1 - 1 2 1 /)5 D 6 pairs 

110 132 3 5 -10  1 0 Dsh D6h two caps 
4 --4 1 1 DSh D6h isolated 
2 - 1 2 1 D 5 D 6 isolated 

120 144 7 6 -11 1 0 DSd D6d tWO caps 
5 - 4  1 1 Dsd D6d isolated 
2 -1 1 2 D 5 D6 isolated 
2 - 4  2 0 D5h D6h isolated 
3 - 4  2 0 Osd D6d isolated 
1 - 1 3 0 D s D 6 pairs 
2 -1  3 0 D5d D6d isolated 

130 156 3 6 -12 1 0 Dsh D6h two caps 
5 - 5  1 1 Dsh D6h isolated 
2 - 2  2 1 D5 D 6 isolated 

140 168 6 7 -13 1 0 DSd Ded tWO caps 

6 - 5  1 1 Dsd Dod isolated 
3 -1  1 2 I D 6 isolated 
3 - 5  2 0 D 5 /96 isolated 
1 0 2 2 D 5 D 6 pairs 
1 0 3 1 D 5 D 6 pairs 

150 180 6 7 -14 1 0 Dsh D6h tWO caps 

6 --6 1 1 Dsh D6h isolated 
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Table 5 (continued) 

Vertices Group 

V 5 V 6 m i j k 1 D 5 D 6 

3 - 2  1 2 D s D 6 

1 1 1 3 Dsh D6h 
1 - 2  3 0 D5h D6h 
2 - 2  3 0 D s D 6 

160 192 8 8 -15 1 0 Dsu D6d 
7 - 6  1 1 Dsa D6d 
1 0 1 3 D 5 D 6 

4 - 6  2 0 Ds, ~ D6d 

3 --6 2 0 Dsh D6h 
3 --3 2 1 D5 D6 
2 0 2 2 Dsa D6d 

1 - 1  2 2 Osh D6h 
170 204 4 8 -16 1 0 D5h D6h 

7 - 7  1 1 D5h D6h 
4 - 2  1 2 D s D 6 

1 - 1 3 1 D 5 D 6 

180 216 8 9 -17 1 0 D5d D6d 
8 - 7  1 1 Ds~ D6d 

4 --3 1 2 D 5 D 6 

4 - 7  2 0 D 5 D 6 

2 - 1 2 2 D s D 6 

3 - 3  3 0 I h D6d 

2 --3 3 0 D 5 D 6 
2 - 1 3 1 D 5 D 6 

190 228 4 9 -18 1 0 D5h D6h 

8 - 8  1 1 D5h D6h 
2 0 1 3 D 5 D 6 

4 - 4  2 1 D 5 D 6 

200 240 11 10 -19 1 0 Dsd D6d 

9 --8 1 1 Dsa D6d 
5 - 3  1 2 Ds D6 

2 -1  1 3 D 5 D 6 

4 - 8  2 0 Dsh D6h 
5 - 8  2 0 Dsa D6d 

2 - 2  2 2 Dsh D6h 
3 -1  2 2 Dsd D6d 

1 1 2 3 D 5 D 6 
1 - 1 4 0 D 5 D 6 
2 1 4 0 D s D~ 

210 252 7 10 -20 1 0 Dsh J6h 
9 - 9  1 l, D5h D6h 
5 --4 1 2 D s 96 
3 - 4  3 0 Ds D6 

2 - 4  3 0 D5h O6h 
2 - 2  3 1 D 5 9 6 
1 0 3 2 Dsh Deh 

220 264 8 11 -21 1 0 Ds,~ D6d 
10 - 9  1 1 Ds,~ D6d 
5 - 9  2 0 D s D 6 
5 - 5  2 1 Ds D6 

Pentagon 
patches 

isolated 
isolated 
isolated 
isolated 
two caps 
isolated 

pairs 
isolated 
isolated 
isolated 
isolated 

pairs 
two caps 
isolated 
isolated 
pairs 
two caps 
isolated 
isolated 
isolated 
isolated 
isolated 
isolated 
isolated 
two caps 
isolated 
isolated 
isolated 
two caps 
isolated 
isolated 
isolated 
isolated 
isolated 
isolated 
isolated 
isolated 
pairs 
isolated 
two caps 

isolated 
isolated 
isolated 
isolated 
isolated 
pairs 
two caps 
isolated 
isolated 
isolated 
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Table 5 (continued) 
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Vertices Group 
Pentagon 

v 5 v 6 rn i j k l Ds 196 patches 

3 -2  2 2 D 5 D 6 isolated 
1 0 2 3 D5 /)6 pairs 
3 -2  3 1 /95 /)6 isolated 
1 0 4 1 D 5 D 6 pairs 

230 276 6 11 -22 1 0 Dsh D6h two caps 
I0 --10 1 1 D s h  D6h isolated 
6 - 4  1 2 Ds D6 isolated 
3 -1  1 3 Ds 196 isolated 
2 0 3 2 D 5 D 6 isolated 
2 0 4 1 D 5 D 6 isolated 

240 288 15 12 -23 1 0 Dsa D6a two caps 
11 - 10 1 1 Dsd O6d isolated 
3 -2  1 3 D 5 D 6 isolated 
1 1 1 4 Dsh D6h isolated 
6 -10 2 0 Dsd D6d isolated 
5 -10 2 0 Dsh D~h isolated 
5 -6  2 1 D s D 6 isolated 
4 - 2  2 2 l h O6d isolated 
3 - 3  2 2 Dsh D6h isolated 
3 - 5  3 0 D s D 6 isolated 
4 - 5  3 0 Dsa 1)6,t isolated 
1 -1 3 2 D 5 D 6 pairs 
1 - 2  4 0 Dsh D6h isolated 
2 -2  4 0 D 5 0 6 isolated 
3 -2  4 0 Ds,~ D6d isolated 

250 300 6 12 -24 1 0 D5h D6h two caps 
11 - 11 1 1 Dsh D6h isolated 
1 0 1 4 D 5 D~ pairs 
6 -6  2 1 D 5 D 6 isolated 
2 0 2 3 D 5 D 6 isolated 
3 - 3  3 1 D 5 D 6 isolated 

w h e r e  

A 1 = i 2 + ij + j 2 ,  

a 2  = j k  - it, 

A 3 = k 2 + k l  + 1 2 -  i k  - il - j l ,  

a n d  

a 4 • m ( j +  k )  + n ( k +  1 -  i) .  

T h e  six p a r a m e t e r s  i, j ,  k, l, m a n d  n are  s u b j e c t  to  t he  f o l l o w i n g  r e s t r i c t i ons :  

A t > 0 ,  dx2~0 (bu t  (k, 1) # ( 0 , 0 )  o r  ( i , j ) ) ,  A3->0 , a n d  A4>--0 (bu t  (m,  n)  # ( 0 , 0 )  

o r  (k  + I -  i, - j  - k)) .  T h e  n u m b e r s  r e p r e s e n t e d  b y  (11) a re  ( see  A p p e n d i x )  v = 6 N 

fo r  N = 4  a n d  N - 6 ,  a n d  v = 6 N + 2  fo r  N - > 3 ;  n u m b e r s  o f  t he  f o r m  6 N + 4  are  

n o t  p o s s i b l e .  
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Table 6. Electronic structure of dihedral carbon clusters with up to 100 atoms. O stands for an open 
shell, PC for a closed shell with low-lying empty bonding orbitals and C for a true closed shell. These 
are results of Hiickel calculations with a single fl parameter. Clusters are specified by vertex number, 
symmetry and pentagon grouping. Only for v=96  is this ambiguous: the cluster marked * has 
(i,j,  k, l) = (3, -2 ,  1, 1) and ** has indices (2, -2,  2, 0) 

Pentagons Electronic Electronic 
v s Group structure /)6 Group structure 

Two caps 20 I h 0 24 D6d 0 

30 Ds h O 36 D6 h O 
40 Dsa 0 48 D6a 0 
50 05h 0 60 D6h 0 
60 Dsd O 72 D6d 0 
70 Osh 0 84 O6h 0 
80 Dsd O 96 D6u O 
90 Ds h O 

100 Dsa O 

Single ring 40 Dsd PC 48 D6d PC 

Pairs 50 Dsh O 60 D6h PC 
60 D s O 72 D 6 PC 
80 Dsh O 96 D6h PC 
90 D 5 O 

100 D s 0 

Isolated 60 Ih C 72 D6d C 
70 Dsh C 84 D6h C 
80 Dsd PC 96 D6d PC* 

]'h 0 D6d 0"*  
Dsh 0 D6h PC 

90 Dsh C 
100 DSd C 

D s 0 

F o r  D2 s y m m e t r y  t h e  n e t  c o n s i s t s  o f  five k i n d s  o f  t r i a n g l e s  a n d  t h e  v e r t e x  f o r m u l a  

is g i v e n  b y  

/J (Da )  = 4(A1 + A2 + A3 '~ A4-]- A5), (12)  

w h e r e  

A 1 = i l - j k ,  

A 2 = k n  - Im,  

A 3 = m q  - rip, 

a 4 = p ( k - i ) - q ( i + j - k - l )  

a n d  

A s = ( k  - m ) ( i  + j  - k - l - p )  - (1 - n ) ( p  + q + l - j ) .  

H e r e  t h e  e i g h t  p a r a m e t e r s  i, j ,  k, l, m, n, p a n d  q a re  s u b j e c t  to  s o m e  m i l d  

r e s t r i c t i o n s ,  as  i n  t h e  c a s e  o f  D 3. E v e r y  v ~ 20 w h i c h  is a m u l t i p l e  o f  4 c a n  b e  

r e p r e s e n t e d  b y  (12) ,  so o c c u r s  as  t h e  v e r t e x  n u m b e r  o f  a c l u s t e r  w i t h  D2 s y m m e t r y :  

see  A p p e n d i x  fo r  de ta i l s .  
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Several low-symmetry clusters are included in the calculations of  Schmalz et al. 
[14]. Some low-symmetry isomers of  C6o were considered by Stone and Wales 
[22] and found to have delocalisation energies comparable with that of  the 
icosahedral form. 

11. Conclusions 

A geometrical method has been described by which general formulas for the 
vertex numbers of pen tagon+hexagon  clusters may be found. Because such 
clusters may have n-fold rotational symmetry only if n is 1, 2, 3, 5 or 6, the 
possible point groups are limited to Ih, I, T~, Th, T, Dnh, Dn~, Dn, S2n, Cnh, C~, 
C~, Cs and C~. The possible site-symmetry groups for a 3-connected vertex are 
C1, C,, C3 and C3~. The results in the present paper  cover all dihedral and higher 
molecular point groups and therefore most cases likely to be of  interest. 

The only vertex numbers for which at least one cluster of  at least dihedral 
symmetry is not possible have the form v = 60k + 22, 60k + 34, 60k + 46 or 60k + 58 
so that our construction provides possible structures for all but v = 22, 34, 46, 
58, 82 and 94 in the range 2 0 -  < v -< 100 and of these v = 22 is unrealisable in any 
symmetry. 

Consideration of the list of  orbits and site symmetries [ 19] yields some information 
about vertex numbers for the remaining groups. For $2~, v must be multiple of  
2n, for Cs, Csh and Cs~, v is a multiple of  10; for C6, Ceh and C6~, v is a multiple 
of  12. Thus to fill the gaps in the v sequence it will be necessary to descend to 
C groups with a principal axis of  order 3. In fact, structures of  C3~, dihedral or 
higher symmetry are possible for all even v-> 20 except 22 and 46; for v = 46 it 
is necessary to descend to C3. With these additional groups we are thus able to 
exhibit at least one pentagon + hexagon cluster for any even number of  vertices 
v ->24. 

The leapfrog principle gives a relationship between geometrical and electronic 
structure and the 60 + 6k rule [ 13] accounts for all tetrahedral and many dihedral 
closed shells. In the range 20-< v-< 100 the closed shells found for non-leapfrog 
clusters are at v = 70, 84 and 100. In this range of v all closed-shell clusters found 
so far have 12 isolated pentagons: as such clusters also tend to minimise 
geometrical strain they are plausible candidates for stable molecules. Isolation 
of the pentagons is not however a guarantee of  a closed electronic shell. 

Finally, it may be noted that the duals of pen tagon+hexagon  polyhedra are 
deltahedra with 12 five-coordinate and v -  12 six-coordinate vertices. They may 
be useful model skeletons for the hypothetical supraicosahedral closo-boranes 
[23, 24]. A deltahedron has v = lv3 + 2 vertices where /)3 is the vertex-number of  
its 3-connected dual. For example, using (1) we find that deltahedra oftetrahedral  
or higher symmetry belonging to this restricted class have 

v = 2[ i2+/ j  + j 2 +  k2+ kl+ 12+ 3(il- jk)  + 1] (13) 

vertices. The first few borane cages predicted by Eq. (13) are B12 (Ih), B16 (Te), 
B22 (Td), B24 ( r ) ,  B28 (T),  B30 (ra) and B32 (Ih). Icosahedral B12H~ is known 
experimentally and four of  the other cages are illustrated by Lipscomb and 
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co-workers [23, 25]. Group-theoretical arguments [24] suggest that the clusters 
with 16, 22 and 28 vertices give neutral boron hydrides whereas the 24 and 
30-vertex clusters would bear a charge of - 2  as hydrides BnHn. The charges are 
related to the number of 4-orbits present in the cage [24] (see above, Sect. 10). 

Acknowledgements .  The  authors wish to thank Professors H. W. Kroto and T. G. Schmalz for preprints 
of  [17] and [14], respectively. 

Appendix 

A1. Tetrahedral clusters 

Uniqueness of  representation: Let ~ (a,/3) denote the tetrahedral cluster determined by the complex 
parameters c~ = i+jo9 and 13 ~ k +  1o9 with i k - f l >  0 as in Sects. 5-8 above. We seek to determine 
restrictive conditions on a and /3 which will guarantee that each distinct cluster is generated once 
and once only. These restrictions were incorporated into the computer programs which produced the 
data for the tables. The tables are complete: in Eq. (1) the condition i l - j k  > 0 implies that all four 
parameters are less than ~ / - ~ ,  so that a systematic enumeration of all clusters with up to a given 
number of vertices is possible. Similar remarks hold for the generation of the tables for the dihedral 
clusters. 

Rotating the net (Fig. 5) through 60 ~ replaces (c~, J3) by (dog,/3o9). Thus ~(a , /3 )  = ~(c~o,/3o9). We 
can eliminate these repeats by requiring i > 0 and j-> 0, so that 0 ~ arg ( a ) <  60 ~ 

Interchanging the roles of the two types of equilateral triangles in the net has the effect of interchanging 
and/3. It follows that ~ (a,/3 ) = ~ (-13, a ), the minus sign being necessary to preserve the orientation 

condition Im ( B / a ) >  0. By specifying lal-> 1/31 we eliminate most of the redundancy here; for the 
borderline case when lal = fJ~l we must ensure additionally that the pairs (a, 13) and (J3, 4) are not 
both included. 

The mirror-image polyhedron to ~(a , /3 )  is ~ (~ ,  6) or ~ (6 ,  - ~ ) ,  as the net is obtained by complex 
conjugation. To eliminate the separate listing of enantiomers one can specify Re (~/13)> 0. Again, 
the borderline case where Re ( a / B )  = 0 needs special treatment (see below). 

Finally, the most subtle way in which a polyhedron may have more than one way of  being described 
as a ~ (a , /3 )  arises from the original claim that ~ is a "twisted truncated tetrahedron", from which 
one could decompose the net into triangles of three types: "large" equilateral triangles of side lal, 
"small" equilateral triangles of  side 1131, and scalene triangles with sides I~1, 1/31 and 1a-131. It turns 
out that there is more than one way, in general, of  joining the 12 pentagon centres of the polyhedron 
into such a net. The polyhedron ~ = ~ ( a ,  13) can also be described by parameters (a ' ,  13') and (a",/3") 

where 

(c~',/3') = (ogc~ + (1 + o9)13,/?) 

and 

(a",/3") = (a, o9/3 - (1 + og)a), 

provided that the condition Im (13/a) > 0 is preserved. Each transformation has order 6. Our existing 
conditions on a and 13 are satisfied by at most one of  the six pairs linked by the first transformation, 
and at most three of the six linked by the second (which has the effect of rotating a / ~  through 60 ~ 
about ~_,/Z-~). For uniqueness here we may specify that 

-90~ arg ( ~ - ~ - 3 ) ~ - 6 0  ~ 

or equivalently that 

O~ (y)~<30 ~ 

where 7 = (3/3 + a~s3)/~. Writing 3/= x+yo9 we have 

x = l( i  - j )  - k ( i + 2 j )  + 3(k2+ k l+  l s) 
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and 

y = l ( i + 2 j ) + k ( 2 i + j )  

and the conditions are x >- y -> 0. Borderline case considerations in the treatment of enantiomers also 
mean that when y = j  = 0, we must have 2k+  l-> 0. 

Multiplication of clusters: if y = p + qto then the transformation (a , /3)  ~ ( a y , / 3 y )  produces a new 
cluster with tetrahedral symmetry, and v( ay ,  /33') = y~,v( a, /3 ) = ( p2 + pq + q2)v(  a ' /3).  This transfor- 
mation will only preserve T d or T h symmetry if arg (y) is a multiple of 30~ essentially, this means 
p = q or q = 0, giving the restricted multiplications w-->3p2v and w-->pZv. Leapfrogging is the special 
case y = x/Z-3; quadrupling is the case 3' = 2. 

If  v is a multiple of 12, then in Eq. (1) the quantity i 2 + i j + j 2 + k 2 + k l + l  2 is a multiple of 3. This 
implies (using modular arithmetic) that both i 2 + / j + j  2 and k 2 + k l + l  2 are multiples of 3, or 
equivalently that the complex numbers a = i+j to and /3 = k +  ko are multiples of x/Z3; hence the 
corresponding cluster is a leapfrog, and v /3  also occurs as the vertex number of a tetrahedral cluster. 

If  p and q are any integers (not both zero) then the transformation 

( a, /3 )~--~ ( pa  + q/3, -qce + p/3 ) 

transforms the cluster with v = v (a , /3 )  vertices into one with (p2 + q2) v vertices. In general T symmetry 
is preserved but the special cases T d or T h are not. In particular we may take p = q = 1: this gives 
the doubling w-->2v via (a,/3) ~-~ (a  +/3, - a  +/3). Moreover if v / 4  is even, then again using complex 
modular arithmetic one can show that a +/3 are both divisible by 2, so that ~ (a , /3 )  is obtained by 
doubling ~ (�89 - /3  ), �89 +/3 )) which has v / 2  vertices. 

Combining the above observations we see that if a number v = 4 • 2 M • 3~v x vo occurs as the vertex 
number of a tetrahedral cluster ~, then ~ can be constructed uniquely from a cluster ~o with 4v o 
vertices by doubling M times and leapfrogging (trebling) N times. Since no cluster exists with 4 
vertices it follows that no (tetrahedral) clusters have vertex numbers of the form v = 4 x 2Mx 3 N. 

A2. Dihedral  clusters: D5 and  V 6 

For both D 5 and D 6 clusters we write a = k + Ito and/3 = i +jto where i, j, k and l are the parameters 
used in Sect. 10 above. The first normalization condition, as for tetrahedral clusters, is k > 0 and 1_> 0. 

Secondly, changing the alignment of the two rings of pentagons has the effect of replacing /3 by 
/3 + c~. It is convenient to normalize here by specifying 0 <- Re ( /3/a)  -< 1. We can also eliminate listing 
of enantiomers by the further restriction 0 -  < Re ( / 3 /a )  <_1, together with an extra check when either 
equality holds. 

Finally if ten (for Ds) or twelve (for D6) pentagons lie in the equatorial plane there is an ambiguity 
as to which set of five (or six) belong to which end of the cluster. In terms of the parameters, if 
lal = [/3- ~to[, then we may replace (a,/3) by (a-/303, a - /3 )  without changing the cluster. So only 
one of these pairs should be included. 

For Dsa or D6d symmetry we require that the basic scalene triangle is isosceles, i.e. 1/31 = la -/31, and 
that arg (a)  = 0 ~ or 30 ~ The first condition is equivalent to Re ( / 3 /a )  = �89 Similarly, for Dsh or D6h 
symmetry we require the scalene triangle to be right-angled (equivalently Re (/3/c~)= 0) with the 
same condition on a. One final possibility: when the pentagons lie in the equatorial plane (i.e. when 
[a[= ]/3- c~to[as above), then we have Dsa or D6d symmetry when arg ( a ) =  0 ~ or 30 ~ and O5h or 
D6h symmetry when arg (/3) = 0  ~ or 30 ~ 

In Eqs. (9) and (10) we may specialize i = 1 = 0, k = 1 and j = 1 - N for N-> 2 to obtain v (Ds)  = 10N 
and v(D6)  = 12N respectively. 

A3. Dihedral  dusters: D 2 and  D 3 

The net for the master polyhedron of a D3 cluster consists of two copies of Fig. 10a; thus there are 
two equilateral triangles and six each of three scalene triangles. Writing ot = i+ jw ,  /3 = k +  lw and 
3' = m + nto, these triangles contribute A1, A2, h 3 and A4 to the vertex number respectively, where 
A1 = i 2 + t j + j  2, etc. as in Sect. 10. 
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a b ~(~-p).w~ 

.pw 

Fig. 10. a One half of the net of the general polyhedron of D 3 symmetry, b One quarter of the net 
of the general polyhedron of D z symmetry 

For n->l,  Eq. (11) gives v ( O , l , l , 0 , 0 ,  n ) = 6 n + 1 4 = 6 N + 2  for N = n + 2 - > 3 ;  for m ~ l  it gives 
v(1, 1,2, 1, m , - m ) = 6 m + 3 0 = 6 N  for N = m + 5 - > 6 ;  and v(1, 1, 1,0, 1,0)=24. Vertex numbers v= 
30 and v = 6N +4 are impossible. 

The net for a D z cluster consists of four copies of Fig. 10b. Writing c~ = i + j w ,  [3 = k +  lw, y = m + nw 

and 6 = p + qw, we find that triangles 1, 2 , . . . ,  5 contribute 2h, ~a, �9 �9 �9 Lxs to the vertex number, where 
A l = i l - j k  etc. as in Sect. 10. Specializing /3=w, 'y=Oj2=W--1 and c3=(.03=--1 we obtain v= 
4(3i+j+2).  Taking j = 0, 1,2 and i->l we see that all v = 4 N  for all N ~ 5  do occur. 
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